Пропустить навигацию.
Главная
Логические игры онлайн

Правило 3: Группы кандидатов

3.1 Очевидные группы кандидатов

3.1.1 Очевидные пары

Когда группа содержит две клетки с одинаковыми парами кандидатов (также единственными), тогда эти кандидаты не могут находиться в других клетках этой группы. Это можно применить к ряду, колонке или области.

Во втором ряду в клетках G2 и H2 кандидатами является пара 1,4. Если в G2 находится 1, то в H2 будет 4, и наоборот. В любом случае эти две клетки обязательно будут содержать 1 и 4. Таким образом мы можем исключить этих кандидатов из остальных клеток ряда.

Поскольку эти пары обе находятся в третьей области (правой верхней), мы также можем исключить числа 1 и 4 из остальных клеток этой области.

3.1.2 Трио и квартеты

Когда три клетки в одной группе не содержат иных кандидатов кроме трех, эти числа могут быть исключены из остальных клеток группы.
Обратите внимание: не обязательно, чтобы эти три клетки содержали все числа трио! Необходимо только чтобы эти клетки не содержали других кандидатов.

В этом ряду мы имеем трио 1,4,6 в клетках A, С и G, или двух кандидатов из этого трио. Эти три клетки будут обязательно содержать всех трех кандидатов. Поэтому они не могут быть в другом месте в этом рядом, и поэтому могут быть исключены из других клеток (E и F).

Аналогично для квартета, если четыре клетки не содержат иных кандидатов кроме как из одного квартета, эти числа могут быть исключены из других клеток этой группы. Как и для трио, клетки, содержащие квартет не обязаны содержать всех четырех кандидатов квартета.

И так далее, для N кандидатов в группе, мы можем найти N клеток, которые содержат только этих кандидатов. После этого мы можем исключить эти числа из остальных клеток группы.

3.2 Скрытые группы кандидатов

Для очевидных групп кандидатов (предыдущий метод: 3.1) пары, трио и квартреты позволяли исключить кандидатов из других клеток группы.
В этом методе, скрытые группы кандидатов позволяют исключить других кандидатов из содержащих их клеток.

Если есть N клеток (2,3 или 4), содержащие N общих чисел (и они не встречаются в других клетках группы), тогда остальные кандидаты для этих клеток могут быть исключены.

В этом ряду пара (4,6) встречается только в клетках A и C.

Остальные кандидаты, таким образом, могут быть исключены из этих двух клеток, поскольку они должны содержать либо 4 либо 6 и никаких других.

Как и в случае очевидных трио и квартетов (3.1.2), клетки не обязаны содержать все числа из трио или квартера. Скрытые трио очень сложно рассмотреть. К счастью, они не часто используются для решения судоку.
Скрытые квартеты разглядеть практически невозможно!